Molecular evidence for precambrian origin of amelogenin, the major protein of vertebrate enamel.
نویسندگان
چکیده
Although molecular dating of cladogenetic events is possible, no molecular method has been described to date the acquisition of various tissues. Taking into account the specificity of the major protein in enamel in formation (amelogenin), we were able to develop such a method for enamel. Indeed, because the amelogenin protein is exclusively involved in enamel formation and mineralization and because it lacks pleiotropic effects, this protein is a good candidate to estimate the date of acquisition of this highly mineralized tissue. We searched DNA banks for similarities between the amelogenin sequence and other sequences. Similarities were found only to exon 2 of SPARC (osteonectin) in two protostomians and in eight deuterostomians, and to exon 2 of three SPARC-related deuterostomian genes (SC1, hevin, and QR1). The other amelogenin exons did not reveal significant similarities to other sequences. In these proteins, exon 2 mainly encodes the peptide signal that plays the essential role in enabling the protein to be ultimately localized in the extracellular matrix. We tested the significance of the exon 2 similarities. The observed values were always significantly higher than the expected randomly generated similarities. This demonstrates a common evolutionary origin of this exon. The phylogenetic analyses of exon 2 sequences indicated that exon 2 was duplicated to amelogenin from an ancestral SPARC sequence in the deuterostomian lineage before the duplication of deuterostomian SPARC and SC1/hevin/QR1. We were able to date the origin of the latter duplication at approximately 630 MYA. Therefore, amelogenin exon 2 was acquired before this date, in the Proterozoic, long before the so-called "Cambrian explosion," the sudden appearance of several bilateralian phyla in the fossil record at the Proterozoic-Phanerozoic transition. This sudden appearance has been often suggested to reflect intensive cladogenesis during this period. However, molecular dating of protostomian-deuterostomian divergence and of the cladogenesis among several major clades of Bilateralia lead to a different conclusion: many bilateralian clades were already present during the late Proterozoic. It has previously been proposed that these bilateralians were not mineralized and that they had low fossilization potential. Our results strongly suggest that late Proterozoic fossils possessing a mineralized tissue homologous to enamel might be found in the future.
منابع مشابه
Conservation and variation in enamel protein distribution during vertebrate tooth development.
Vertebrate enamel formation is a unique synthesis of the function of highly specialized enamel proteins and their effect on the growth and organization of apatite crystals. Among tetrapods, the physical structure of enamel is highly conserved, while there is a greater variety of enameloid tooth coverings in fish. In the present study, we postulated that in enamel microstructures of similar orga...
متن کاملComputational approach towards identification of pathogenic missense mutations in AMELX gene and their possible association with amelogenesis imperfecta
Amelogenin gene (AMEL-X) encodes an enamel protein called amelogenin, which plays a vital role in tooth development. Any mutations in this gene or the associated pathway lead to developmental abnormalities of the tooth. The present study aims to analyze functional missense mutations in AMEL-X genes and derive an association with amelogenesis imperfecta. The information on miss...
متن کاملPosttranslational Amelogenin Processing and Changes in Matrix Assembly during Enamel Development
The extracellular tooth enamel matrix is a unique, protein-rich environment that provides the structural basis for the growth of long and parallel oriented enamel crystals. Here we have conducted a series of in vivo and in vitro studies to characterize the changes in matrix shape and organization that take place during the transition from ameloblast intravesicular matrices to extracellular subu...
متن کاملGenetic basis for the evolution of vertebrate mineralized tissue.
Mineralized tissue is vital to many characteristic adaptive phenotypes in vertebrates. Three primary tissues, enamel (enameloid), dentin, and bone, are found in the body armor of ancient agnathans and mammalian teeth, suggesting that these two organs are homologous. Mammalian enamel forms on enamel-specific proteins such as amelogenin, whereas dentin and bone form on collagen and many acidic pr...
متن کاملUltrastructural and immunocytochemical studies of enamel tufts in human permanent teeth.
Enamel tufts were exposed after decalcification of the enamel matrix and their fine structures and immunocytochemical characteristics were examined. Under the binocular microscope and the scanning electron microscope (SEM), enamel tufts appeared as corrugated ribbon-like structures located on the dentine parallel to the tooth axis. SEM observation disclosed enamel tufts as bundles of well exten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 18 12 شماره
صفحات -
تاریخ انتشار 2001